[文字サイズの変更]
▼
▲
©2025 数学クラブ http://sugaku.club/
月 日( )
● 次の等式を[ ]内の変数について解きなさい.
[182-00]
(1)
[
w
]
u
=
4
(
v
+
w
)
(2)
[
v
]
u
=
9
(
2
v
+
w
)
+
2
(3)
(
b
+
c
)
h
[
c
]
a
=
3
(4)
[
c
]
a
=
2
(
b
+
c
)
(5)
[
b
]
a
=
7
(
b
+
c
)
(6)
4
(
b
+
c
)
[
c
]
X
=
a
(7)
[
v
]
A
=
2
(
u
+
v
+
w
)
(8)
[
y
]
x
=
10
(
3
y
+
z
)
+
6
(9)
[
w
]
u
=
10
(
v
+
w
)
(10)
[
c
]
a
=
9
(
b
+
c
)
©2025 数学クラブ http://sugaku.club/
月 日( )
【解答例】
(1)
[
w
]
u
=
4
(
v
+
w
)
4
(
v
+
w
)
=
u
v
+
w
1
=
u
4
w
1
=
u
−
v
4
(2)
[
v
]
u
=
9
(
2
v
+
w
)
+
2
9
(
2
v
+
w
)
=
u
−
2
2
v
+
w
u
−
2
=
9
2
v
1
2
=
u
−
w
−
9
9
v
1
1
1
=
u
−
w
−
18
2
9
(3)
(
b
+
c
)
h
[
c
]
a
=
3
(
b
+
c
)
h
3
=
a
b
+
c
3
a
=
h
c
3
a
=
−
b
h
(4)
[
c
]
a
=
2
(
b
+
c
)
2
(
b
+
c
)
=
a
b
+
c
1
=
a
2
c
1
=
a
−
b
2
(5)
[
b
]
a
=
7
(
b
+
c
)
7
(
b
+
c
)
=
a
b
+
c
1
=
a
7
b
1
=
a
−
c
7
(6)
4
(
b
+
c
)
[
c
]
X
=
a
4
(
b
+
c
)
a
=
X
b
+
c
a
X
=
4
c
a
X
=
−
b
4
(7)
[
v
]
A
=
2
(
u
+
v
+
w
)
2
(
u
+
v
+
w
)
=
A
u
+
v
+
w
1
=
A
2
v
1
=
A
−
u
−
w
2
(8)
[
y
]
x
=
10
(
3
y
+
z
)
+
6
10
(
3
y
+
z
)
=
x
−
6
3
y
+
z
x
−
6
=
10
3
y
1
3
=
x
−
z
−
10
5
y
1
1
1
=
x
−
z
−
30
3
5
(9)
[
w
]
u
=
10
(
v
+
w
)
10
(
v
+
w
)
=
u
v
+
w
1
=
u
10
w
1
=
u
−
v
10
(10)
[
c
]
a
=
9
(
b
+
c
)
9
(
b
+
c
)
=
a
b
+
c
1
=
a
9
c
1
=
a
−
b
9